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Effects of periodicity on flow and dispersion through closely packed fixed beds of spheres
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A lattice-Boltzmann formulation is used to investigate the effects of “periodicigeometry on fluid flow
and tracer-particle dispersion through fixed beds of spheres comprising of closely packed layers. In the
“period-1" arrangement, spheres in the adjacent layers contact at their poles while the “period-2" and “period-
3" arrangements correspond to hexagonal and faced-centered cubic close packing. For all three packing
arrangements, there is a transition with increasing Reynolds number from a power law to a log-normal
distribution of kinetic energies and, velocity and vorticity become more closely aligned giving rise to helical
tracer-particle trajectories. It is suggested that these flow characteristics, unlike the stability of flow and the
distribution of helicity, are largely insensitive to geometry, even when the geometry creates direct channels
through the pack bed orientated along the gradient in applied pressure. For steady flows and strongly turbulent
flows, such channels are predicted to provide direct routes for dispersion through a packed bed, while for
weakly turbulent flows they influence dispersion primarily by destabilizing the flow and thereby promoting
dispersion throughout a bed. The dispersion of tracer-particles released from a source located on or close to a
“stagnation streamline” is predicted to be faster than ballistic in the near field and the transition to long-time
Fickian diffusion is predicted to be distinguished by a regime of subdiffusion.
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I. INTRODUCTION ment of vorticity and velocity. It will be shown later that
these distributions play a key role in determining transport
In this paper, the effects of periodicity on fluid flow and Processes. Transport processes in fixed beds and porous me-
tracer-particle dispersion through fixed beds of spheres conflia ten_d_to be balllst|_c at sufficiently short times _and Flc_klan
prising of closely packed layers is examined in numericat Sufficiently large timegS]; the notable exceptions being
studies using a lattice Boltzmann formulation. In the “period 33S€0US dispersion driven by adiabatic expanstiinand

1" arrangement, spheres in adjacent layers contact at theﬁispersion in structures ha_ving a fractal _dime_nsion. This
poles (i.e., the unit cell is an equilateral prigrwhile the eaves the nature of dispersion at intermediate times open to

“neriod 2* and “period 3" arrangements correspond to hex- speculation; despite it obvious importance to a proper under-

ol Ki di tered ol ki standing of the transport processes and model parametriza-
agonal close packinghcp) and face-centered close packing tion. This is particularly true of turbulent flows that are not

(fec). The period-1 and -2 arrangements are distinctly differ-endable to analytic analysis but which are nevertheless of

ent from the period-3 arrangement in that they have directonsiderable practical importance. It can be anticipated, on

channels for flow and dispersion orientated along a principadhe pasis of a generalization of rapid distortion theldhg],

axis [001] which in most practical situations will be the ori- that the presence of stagnation points in a flow leads to

entation of a gradient in applied pressure and the orientatioanomalously large dispersion at intermediate times for

adopted here. For the period-3 arrangement[111é] direc-  sources in the vicinity of the “stagnation streamline.” It is

tion is a more natural orientation for the gradient in appliedeven conceivable, given the expected profusion of singular

pressurd1]. points in flows through packed beds, that there is anomalous
Some indication of the importance of geometry comespower-law dispersion at intermediate times, analogous to the

from the numerical studies of Reynolds, Reavell, and Harrasuperdiffusive characteristic of tracer particles in simulated

et al.[1] and Hill and Koch[2,3] who in their investigations two-dimensional turbulend®] and the dispersion of drifters

of flow through a fixed close-packed bed of spheres in a fcén the oceari10-13 that is closely associated with the pres-

arrangement, observed the same sequence of flow transitioB§ce of hyperbolic and elliptic points in such flo@@. In

but found that critical Reynolds numbers were dependenihis paper, the nature of intermediate-time dispersion through

upon the orientation of the gradient in applied presgues, ~ fixed beds is investigated. _ _

upon geometry More strikingly, Ladd and Koché] in their The remamder of_ this paper is orgapged as follows. .The

numerical investigation of flow through two-dimensional ar-N€Xt section contains a brief description of the lattice-

rays of cylinders found that both the critical Reynolds andBoItzmann formul_atlon and the . numerlcal S|mulat_|or_1 of
the nature of the transitions are dependent upon the orientd2C€" 9as dispersion. Flow and dispersion characteristics are
tion of the gradient in applied pressure en described in Sec. lll. Conclusions are drawn in the final

Of particular interest will be the effects of “periodicity” section.
upon distributions of kinetic energy, VortiCity, and the align- 1. NUMERICAL SIMULATIONS
A. Lattice-Boltzmann simulations
*Fax: +44(0)1525860156; This section provides a brief description of the lattice-
email address: andy.reynolds@bbsrc.ac.uk Boltzmann methodLBM) and its application to the simula-
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tion of flows through close-packed beds of spheres. More
detailed descriptions of the particular LB formulation /
adopted, commonly denoted HY;Q,5, can be found in

Qian, d’'Humieres, and Lallemand4] and Chen and Doolen \\//
[15]. , LA

In the LBM, a discrete analogue of the linearized Boltz- | ,//\
mann equation A

1 ven Layers ayers
fi(x+c,t+1)—fq(x, t):—;[fl(X’ t)—fY(x, 1)] Even Lay 0dd Lay

@ FIG. 1. Locations of spheres in alternate layers of a hexagonal
is solved for the number density of molecules at nadat  close arrangemerileft). Also shown(right) are the locations of the
timet, f;(x, t), of a gas of “fictitious” molecules that trans- Spheres within the computational cell, that comprises of two “even”
late from node to node on a cubic lattice with a discrete seteyers and an “odd” layer. Periodic boundary conditions are applied
of velocities,c; . In the present model, there are six velocities@t the top, bottom, and sidésashed linessof the cell. The location
of speed one corresponding to t#00 directions, eight of an open channel through _the (_:eII _an_d a_llgned with the direction
velocities of speed3 corresponding to thél11) directions ~ ©f the applied pressurghe z direction is indicated(+). The com-
and one “rest’ particle of speed zero. The distribution puta‘t‘lonal “ceII for the period-1 arrangement of spheres comprises of
f1(x, t) is related to the fluid density and the momentum two “even” layers.

densityj = pu, by rate results is primarily controlled by the need to resolve

flow within the voids between neighboring spheres. The re-
p=2 f1, j=2 ficy, (2)  sults of numerical simulations indicated that when void
[ [ cross-sectional area&pproximately triangular in shape
) ) . o ) . contained more than about X425 25 nodes, grid indepen-
and the nondimensional kinematic viscosity of the fluis ~ jent resultgerrors of less than S¥were obtained for flows
related to the nondimensional relaxation timéy v=(27  \ith Re<400 through the period-1 arrangement and for
—1)/6. Appropriate forms for equilibrium distributions, fio\s with Re<120 for the period-2 arrangement. This was
f7(x, 1), are taken from Qian, d’Humieres, and Lallemandachieved by having computational cells containing<2@0
[14] X 100 nodes and 60104x 98 nodes for the period-1 and
period-2 arrangements, respectively. The maximum mean ve-
(c-u)2— izuz G locity was less than the speed of sound so ensuring incom-
2cg pressible fluid dynamics. The ability to simulate directly
flows within the period-1 arrangement with relatively large
wheret,=2/9 for rest particles, 1/9 for particles with speed 1 Reynolds numbers is a simple consequence of the greater
and 1/72 for particles with spee@®. The speed of souncy  stability of nonturbulent flows within such structurésee
=1/y3. Sec. Il A). Flows with larger Reynolds numbers were simu-
Each solid sphere is defined by a spherical surface whickated using the LBM was used in conjunction with a subgrid
cuts some of the links between the lattice nodes. The fictimodel[19], with a Smagorinky constanG,=0.1.
tious gas molecules moving along these links were reflected The computational cells utilized in the numerical model-
so that, in a single time step, they return to the lattice nodegg are indicated in Fig. 1. Periodic boundary conditions
from where they came with an opposite velocity. As a resultwere applied at the edges of these cells, thereby facilitating
a no-slip velocity condition is imposed midway along the the simulation of flows through packed beds of infinite ex-
link. It is this easy implementation of the no-slip velocity tent. The gradient in applied pressure was assumed not to
condition by the “bounce-back boundary scheme” whichvary significantly across the computational cells so that its
makes the LBM ideal for simulating fluid flows in compli- effects could be modeled accurately by a constant body-force
cated geometries. The bounce-back scheme is, however, orif=(0, 0,F). This was implemented by calculating the equi-
first order in numerical accuracy at the boundglr§] and so  librium distribution functions with an altered fluid velocity
degrades the LBM, which for the interior nodes is secondu+ 7F/p rather than with the actual fluid velocity[20].
order in numerical accuracy. Bounce-back schemes that are For the period-1 and -2 arrangements, the initial value
second-order accurate have been proppsépbut cannot be  problem was solved in which the fluid velocity was zero
readily implemented for complicated geometries. For thisthroughout the domain and a body force was applied at time
reason, they are not employed here. It should also be noted=0. The chaotic(turbulen} solutions to the LBM were
that this paper predates the appearance of the paper by Veaken to be converged when both the mean flow and the
berg and Ladd18] which describes a LBM approach that is velocity variance varied by less than 1% during the last 25%
second-order accurate at the boundary. of the run. Typically, 600 000 time steps were required. A
The discrete representation of the spheres becomes modetailed description of the computations for the period-3 ar-
spherical with increasing sphere-radius-to-node spacing raangement can be found in Reynolds, Reavell, and Harral
tio. However, the size of the lattice required to obtain accu{1].

1
f?qztlp 1+ C—g(Ci-U)'f' 2_(:2
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B. Simulation of particle trajectories (turbulen) with frequency spectra exhibiting inertia sub-

There are two possible approaches to the modeling of@nge scaling, i.e(w)~ * over a narrow range of fre-
particle dispersion. In the Eulerian approach, a diffusion-duencies. The same sequence of transitions, but with differ-
advection equation for the time evolution of a scalar isént critical Reynolds number, has also be found for the
solved while in the Lagrangian approach, mean concentra?€riod-3 arrangemeritl—3| but in stark contrast with the
tions of a scalar are calculated by ensemble averaging ovéesults of numerical simulations using the LBM for two-
the simulated independent tracer-particle trajectories. In thigimensional flows through periodic arrangements of cylin-
paper the Lagrangian approach is adopted because: tlders[4], there was no indication of their being any period-
boundary conditions do not need to be specifiggtori in an  multiplying transitions. Of the three closely packed
ad hocfashion; the approach does not introduce numericahrrangements, the period{the nonclosed-packgarrange-
diffusion and; because it can be readily extended to “heavy’ment is the most stable, with steady flows persisting at Re
particles. >100, while the period-2 arrangement is the least stable be-

The trajectories of tracer-particlexq( us) were simu-  coming chaotic at Re19.8 and having the largest ratios of
lated by numerical integration of the tracer advection equare//Re. Characteristics of these flows and the nature of the
tion flow transitions are further examined in Secs. 111 B and Il C.

dx;

T u(x¢, t), (4) B. Distributions of turbulent kinetic energy

A natural quantity to statistically characterize the fluid
flow associated with each node in the computational grid is
where to filter out the effects of the staggered momentumthe kinetic energyk=1/2pu-u. Figure 2 shows that the dis-
inherent in the solution to thB ;Q45 model[21], the particle tributions of normalized kinetic-energlf =k/k,ax for the
velocity u;, is taken to be the local fluid velocity, temporal steady and chaotic flows with R and Re=19.8 through
averaged over two successive iterations of the latticethe period-2 arrangement. It is seen that for the steady flow,
Boltzmann model. This quantity is known only at the nodesthe distributionn(E) of E follows a power law over roughly
of the computational grid and at discrete times. An approxitwo orders of magnitude, while for the chaotic flow, it has a
mation to this quantity at the particle location at tim&as  log-normal distribution over roughly three orders of magni-
obtained by linear interpolation from the grid nodes to thetude in analogy with the log-binomial distribution for the
particle location and from the solutions for tim&sandt’ local currents found in the corresponding random resistor
+1 to timet wheret’ <t<<t'+1. network [22,23. Similar transitions with increasing Rey-
Close to the solid boundaries the spatial resolution of thenolds number from a power-law to a log-normal distribution
grid is not sufficient, nor can it ever be, for an accurateof turbulent kinetic energies have been reported for the
determination of particle trajectories. These inaccuraciegperiod-3 arrangement and were also found for the period-1
which are compounded by the interpolation, can result in therrangement. Andradet al. [24] suggested that such a
nonphysical deposition of some tracer particles. To overcompower-law distribution indicates that the local kinetic energy
this difficulty, the flow at the boundary nodes, which is pre-is sensitive to the geometry of the pore structure. Conse-
dicted to vanish, was given a small normal outward compo-guently, when the flow is steady, the “stagnant” zones play a
nent. The magnitude of this normal component was taken tsignificant role in determining transport through the packed
be constant throughout the flow domain and equal to théed, in contrast with the dangling ends for the analogous
smallest value which prevented all nonphysical depositionelectrical transport problenj22,23. A transition from a
This was typically two or more orders of magnitude less tharpower-law to a log-normal distribution of kinetic energies
the magnitude of the velocity at the nearest node within thdas also been predicted to occur for flows through the
flow. The simulated trajectories of tracer particles were foundperiod-3 arrangement of spheréds.
to be insensitive to a tenfold increase in the value of the Several factors may contribute to the dissimilarities be-
outward velocity component. tween the scaling of the steady and turbulent flows. At low
values of Re, there is a tendency for the fluid at the local
void scale to preserve the parabolic shape of the velocity
Ill. PREDICTED FLOW AND DISPERSION profiles even when the fluid is confined to very tortuous
CHARACTERISTICS pathways. At high values of Re, however, the irregular ge-
ometry is very effective in producing sudden and dramatic
changes in the directions and magnitudes of the fluid veloci-
Here, as throughout, Reynolds numbers Re antd®e ties, thus distorting their parabolic profile at the local level of
based upon the radius of a sphere, the magnitude of the volthe void space. Furthermore, at high values of Re, the non-
metrically and temporally averaged fluid velocity within the linear advection term in the Navier-Stokes equations become
voids and the root-mean-squafens) of the magnitude of relevant and can lead to vortices and flow separation. Indeed,
the volumetrically averaged fluid velocity. With increasing in their numerical simulations of flows through closed-
Re, flows through the period-1 and period-2 arrangements gfacked spheres in a fcc arrangement with the gradient in
spheres underwent a series a transitions from steady to tinapplied pressure oriented along fl@®1] direction, Hill and
periodic to quasiperiodic before eventually become chaoti&och[3] observed that with increasing Reynolds number, the

A. Sequence of transitions
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FIG. 2. The distribution of normalized local kinetic energy for a steady flow with-®& (top) and a chaotic flow with Re19.8
(bottom. The power-law scaling regimes are indicated by dashed lines.

geometrical structure of the flow changes from one that is C. Helicity
dominated by extension and shear to one in which the trajec- The distributions of cog=u- o/|u||@| shown in Fig. 3

tories are helical. That is, with increasing Re, velocity anddemonstrate such transitions also occur for the period-1, -2,
vorticity, =V Xu, become more closely aligned. and -3 arrangements. For all three arrangements, there is,

T
-1.0 -05 00 0.5 10 -1.0 -0.5 0.0 05 1.0

1.0 0.5 0.0 0.5 1.0
cos ¢ cos ¢ cos @
Period 1 Period 2 Period 3

FIG. 3. The probability density function of the cosine of the angle between the velocity and the vorticity at a single instant in time for
the period 1(left: @, steady flow with Re-50.6; (1, chaotic flow with Re=379.4, period 2,(middle: @, steady flow with Re-0.2; [J,
chaotic flow with Re=19.8; distributions for Re19.8 and 650 were not found to be significantly diffejeartd the period &right: ®, steady

flow with Re~0.2; O, chaotic flow with Re=113; distributions for Re113 and 2200 were not found to be significantly diffefent
arrangement of spheres.
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G)'U/O'w'u GJ'U/O'Q'U QOU/O’&u
Period 1 Period 2 Period 3

FIG. 4. The probability density function, at a single instant in time of helicity for turbulent flows through the periedt, 1Re
~379.9, 2 (middle, Re=19.8; a similar distribution was obtained for RE650) and 3(right, Re=~113) arrangement of spheres. The lines are
double exponential distributions with zero mean and standard deviatjon

with increasing Reynolds number, a decrease in the magnspheres, channelling occurs when the flow is steady but
tude of the peak of the distribution at cps0, caused by breakdowns at moderate Reynolds numbers when the mag-
fluid in the outer regions penetrating into the shear-hitude and orientation of the quasiperiodic flow within the
dominated flow close to the spheres and an increase in tHéhannels becomes subject to large spatial-temporal fluctua-
tail of the distribution at cog==+1 caused by the closer tions, which Igad to a destabilizing the flow throughout the
alignment of velocity and vorticity. These findings suggestP€d. Channelling is seen to re-emerge at such larger Rey-
that the mechanism proposed by Hill and Kd&j for the nolds numbers when the flow becomes turbulent. .
transfer of energy to smaller scales by the dynamic interac- ''acer particles released from sources located within
tion of vortices is generally applicable to flows through arbi-channels and into the quasiperiodic flow were found to dis-
trary closely packed arrangements of sphéiespective of perse throughout the bed, while the majority of those re-
whether changes in geometry are brought about the packi ased into the turbulent flogand advected by the resolved

arrangement or by a reorientation of the gradient in applie id motiong were found to remain within the channels. The

pressurg and that the occurrence of helical trajectories is g €-emergence of channelling at high-Reynolds numbers can,

generic feature of such turbulent flows. The later has impor;herefore, be expectgd o be accompan[ed_by a rgductlon n
iffusivity. Tracer particle in the quasiperiodic flow is exam-

tant implications for particle transport because helicity, eve . - )
when time dependent, is an important quantity governindned in more detail in the next section.
dispersion and is associated with suppressed rates of turbu- 10°—
lent dispersion at long times and anomalous dispersion at
intermediate time$25,26. Note, however, that within the
channels in the period-1 and -2 arrangements, the probability
of |cos¢|>0.5 is negligibly small when ReO(10?).

The distributions of helicity h=u-w® in moderate
Reynolds-numbef Re~O(10?)] turbulent flows are, how-
ever, strongly dependent upon geometry. For the period-3
arrangement with the gradient in applied pressure in the
[001] direction, this distribution is close to being a double
exponential 3], while for the period-1, -2, and -3 arrange-
ments considered here it is not, as demonstrated in Fig. 4.
For these arrangements, a double exponential distribution
only arises when ReO(1(?), as illustrated in Fig. 5.

D. Channelling

w-u Ow.u

A key difference between the fcc and the period-1 and -2
arrangements of spheres is the orientat_ion of straight chan- g 5. The probability density function, at a single instant in
nels through the packed bed. For the period-1 and -2 arrang@me, of the helicity from the lattice Boltzmann simulations for a
ment these channels are oriented along[0®1] direction,  chaotic flow Re=2200 through closed-packed spheres in a fcc ar-
which is the most natural orientation of the gradient in ap-rangement with the gradient in applied pressure in[fHe] direc-
plied pressure and the orientation adopted in the presefiibn. The lines are double exponential distributions with zero mean
study. As shown in Fig. 6, for the period-2 arrangement ofand standard deviatios,, , .
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FIG. 6. Snap shots of the predicted velocity
components in thex-z and y-z planes passing
through the middle of the channéhdicated by
the dashed lineof the period-2 arrangement of
spheres for a steady flow with R®.2, a quasi-
periodic flow with Re=19.8 and a turbulent flow
with Re=650. For clarity, only every second vec-
tor is plotted. A vector with length equal to a
sphere radius corresponds to a projected speed
|u|=0.06, nondimensionalized on the sphere ra-
dius and the kinematic viscosity. To remove the
“staggered momentum,” velocity components
have been averaged over two successive interac-
tions n of the lattice Boltzmann equation.

Re=0.2 Re=19.8 Re=650

E. Dispersion characteristics is shown in Fig. 8. Transport is seen to be ballistic at short

In the absence of molecular diffusion, dispersion in steadyimes and Fickian in the far field, while at intermediate
flows can only arise from distributed sources through theimes, itis superdiffusive and faster than ballistic. The Fick-
action of mean-streamline strainirige., convective disper- ian dispersion characteristic is most probably a consequence
sion). This mechanism is likely to be most effective when theof the length and time scales on which transport occurs being
gradient in applied pressure is not aligned with a principalmuch longer than the scales on which the velocity field ex-
axis or when the Eulerian flow is unsteady because then paperienced by the particles varies.
ticle trajectories can be nonperiodic. As for the fcc arrange- Intermediate-time superdiffusion occurs for displacements
ment of sphere§l], the root-mean-square spread of tracer-between about 0.7 and 2.8 sphere radii in the direction of the
particles o at a distanced from a point source in the gradient in applied pressure, which corresponds to transport
quasiperiodic flow with the hcp arrangement of spheres isround the first and second spheres encountered by the tracer
seen in Fig. 7 to obeycd? in the far field. The observed particles, and consequently, to the first and second encoun-
anisotropy arises because the source, which is located withigrs tracer particles have with stagnation points in the flow.
a void that is not in channel, is approximately one sphererhe extent and degree of the superdiffusion is seen to be
radius from the nearest channel in telirection but is ap-  more pronounced in the simulation data for the period-2 than
proximatelyv3 radii from the nearest channel in thelirec- o/ the period-3 arrangement and in both cases increases with
tion. The corresponding temporal development of diSpersiof},creasing Reynolds number. Indeed, the simulation data for
the hcp arrangement clearly shows the emergence of anoma-
lous power-law dispersion, which for R&(10%) extends
over about one order of magnitude in nondimensional times,
t/(r?/v). The possibility but not the superdiffusive charac-
4 teristic per seof such rapid plume growth in the vicinity of a

“stagnation streamline” and around an obstacle in a turbu-
/ lent flow has been investigated previously using a generali-
— zation of rapid distortion theory7,8]. According to this
o e theory, dispersion is enhanced by mean-streamline straining.
o For the period-3 packing arrangement, the transition from
: superdiffusion to Fickian dispersion is seen in Fig. 8 to be
0 T | T | | distinguished by a regime of subdiffusion. This subdiffusion
12 may be a consequence of particle entrapment in the viscous
boundary layers close to the solid surfaces and the contrac-

FIG. 7. The predicted rms spread of tracer-particigsand o, tion of mean streamlines in the “wake” flows behind the
(x direction, ®; y direction M) from a continuous point source SPhere$7.,8]. For the hcp arrangement of spheres, these sub-
within a void (not in a channelinto the quasiperiodic flow with diffusive effects are probably masked by the dominance of
Re~19.8 and within the period-2 arrangement of spheres, as a funguperdiffusion. Support for this conjecture comes from the
tion of (d)llz, whered is the distance from the source measured inSimulation data for a source located within a direct channel
sphere diameters. The power-law regimes are indicated by soli@nd far from a stagnation streamline which, as shown in Fig.
lines. 8, exhibits subdiffusion at intermediate times.

6

g /r.o/r
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t/(r*/v) t/(r*/v)

FIG. 8. The predicted mean-square spread of tracer-partiﬁleﬁsom a source on the “stagnation streamline” in directions normal to the
gradient in applied pressure as a function of titnfey the fcc(left) and hcp(right) arrangements of spheres. Predictions are shown for flows
within the hcp arrangement of spheres with-Re(107) (solid lineg and Re-O(10%) (dotted lines. Also shown(dashed lingare predictions
for the dispersion of tracer particles from a source located within an open channel into a flow wit(RE). The regimes of ballistic
(oﬁoctz) and Fickian ¢oct) transport are indicated. Quantities have been rendered nondimensional using the sphere aadidlse
viscosity v. At timest/(r?/v)~0(10%, tracer particles have typically traversed a distance greater thran 20

IV. CONCLUSIONS changes in periodicity suggests that they persist when the
1,oacking geometry is effectively changed by a reorientation of
spheres in a period-1, periodéBcp), and period-afce) ar- the direction of the gradient in applied pressure. This conjec-

P P P P, P ture is supported by simulation data for the fcc close-packing

rangement of spheres have been studied in numerical simy- . . : : )
lations. For the period-1, -2 and -3 packing arrangements"érrangement with the gradient in applied pressure oriented

. i o . along the[111] and[001] directions[1-3].
there is a transition with increasing Reynolds number from a For steady and strongly turbulent flows, the channels

power-law to a log-normal distribution of turbulent kinetic through the period-1 and -2 arrangements of spheres provide
energies and, velocity and vorticity become more closely

aligned. The power-law distribution of turbulent kinetic en- direct routes for marked fluid-particle transport but for

ergies indicates that the “stagnant” zones of steady ﬂOWSWeakly turbulent flows influence dispersion primarily by de-

e : o stabilizing the flow throughout the entire flow domain.
play a significant role in determining transport, contrary to
the dangling bonds in the analogous electrical transport prob-
lem, while the occurrence of helical trajectories has impor-
tant consequences for turbulent transport processes, resulting This work was partly supported by the BBSRC through
in suppressed rates of turbulent dispersion at long times andOPA Grant No. 978945. | thank Reghan Hill of Princeton
anomalous dispersion at intermediate tifi25,26. The ro-  University for disclosing his unpublished findings and for
bustness of these flow and dispersion characteristics tfsuitful communications.

In this paper, flow and dispersion through a fixed bed o
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