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Effects of periodicity on flow and dispersion through closely packed fixed beds of spheres

A. M. Reynolds*
Silsoe Research Institute, Wrest Park, Silsoe, Bedford, MK45 4HS, United Kingdom

~Received 10 April 2001; revised manuscript received 4 October 2001; published 23 January 2002!

A lattice-Boltzmann formulation is used to investigate the effects of ‘‘periodicity’’~geometry! on fluid flow
and tracer-particle dispersion through fixed beds of spheres comprising of closely packed layers. In the
‘‘period-1’’ arrangement, spheres in the adjacent layers contact at their poles while the ‘‘period-2’’ and ‘‘period-
3’’ arrangements correspond to hexagonal and faced-centered cubic close packing. For all three packing
arrangements, there is a transition with increasing Reynolds number from a power law to a log-normal
distribution of kinetic energies and, velocity and vorticity become more closely aligned giving rise to helical
tracer-particle trajectories. It is suggested that these flow characteristics, unlike the stability of flow and the
distribution of helicity, are largely insensitive to geometry, even when the geometry creates direct channels
through the pack bed orientated along the gradient in applied pressure. For steady flows and strongly turbulent
flows, such channels are predicted to provide direct routes for dispersion through a packed bed, while for
weakly turbulent flows they influence dispersion primarily by destabilizing the flow and thereby promoting
dispersion throughout a bed. The dispersion of tracer-particles released from a source located on or close to a
‘‘stagnation streamline’’ is predicted to be faster than ballistic in the near field and the transition to long-time
Fickian diffusion is predicted to be distinguished by a regime of subdiffusion.

DOI: 10.1103/PhysRevE.65.026308 PACS number~s!: 47.55.Mh, 47.27.2i, 87.15.2v
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I. INTRODUCTION

In this paper, the effects of periodicity on fluid flow an
tracer-particle dispersion through fixed beds of spheres c
prising of closely packed layers is examined in numeri
studies using a lattice Boltzmann formulation. In the ‘‘peri
1’’ arrangement, spheres in adjacent layers contact at t
poles ~i.e., the unit cell is an equilateral prism! while the
‘‘period 2’’ and ‘‘period 3’’ arrangements correspond to he
agonal close packing~hcp! and face-centered close packin
~fcc!. The period-1 and -2 arrangements are distinctly diff
ent from the period-3 arrangement in that they have dir
channels for flow and dispersion orientated along a princ
axis @001# which in most practical situations will be the or
entation of a gradient in applied pressure and the orienta
adopted here. For the period-3 arrangement, the@111# direc-
tion is a more natural orientation for the gradient in appl
pressure@1#.

Some indication of the importance of geometry com
from the numerical studies of Reynolds, Reavell, and Ha
et al. @1# and Hill and Koch@2,3# who in their investigations
of flow through a fixed close-packed bed of spheres in a
arrangement, observed the same sequence of flow transi
but found that critical Reynolds numbers were depend
upon the orientation of the gradient in applied pressure~i.e.,
upon geometry!. More strikingly, Ladd and Koch@4# in their
numerical investigation of flow through two-dimensional a
rays of cylinders found that both the critical Reynolds a
the nature of the transitions are dependent upon the orie
tion of the gradient in applied pressure.

Of particular interest will be the effects of ‘‘periodicity’
upon distributions of kinetic energy, vorticity, and the alig
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ment of vorticity and velocity. It will be shown later tha
these distributions play a key role in determining transp
processes. Transport processes in fixed beds and porous
dia tend to be ballistic at sufficiently short times and Ficki
at sufficiently large times@5#; the notable exceptions bein
gaseous dispersion driven by adiabatic expansion@6# and
dispersion in structures having a fractal dimension. T
leaves the nature of dispersion at intermediate times ope
speculation; despite it obvious importance to a proper und
standing of the transport processes and model paramet
tion. This is particularly true of turbulent flows that are n
amendable to analytic analysis but which are nevertheles
considerable practical importance. It can be anticipated,
the basis of a generalization of rapid distortion theory@7,8#,
that the presence of stagnation points in a flow leads
anomalously large dispersion at intermediate times
sources in the vicinity of the ‘‘stagnation streamline.’’ It
even conceivable, given the expected profusion of singu
points in flows through packed beds, that there is anoma
power-law dispersion at intermediate times, analogous to
superdiffusive characteristic of tracer particles in simula
two-dimensional turbulence@9# and the dispersion of drifters
in the ocean@10–13# that is closely associated with the pre
ence of hyperbolic and elliptic points in such flows@9#. In
this paper, the nature of intermediate-time dispersion thro
fixed beds is investigated.

The remainder of this paper is organized as follows. T
next section contains a brief description of the lattic
Boltzmann formulation and the numerical simulation
tracer gas dispersion. Flow and dispersion characteristics
then described in Sec. III. Conclusions are drawn in the fi
section.

II. NUMERICAL SIMULATIONS

A. Lattice-Boltzmann simulations

This section provides a brief description of the lattic
Boltzmann method~LBM ! and its application to the simula
©2002 The American Physical Society08-1
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A. M. REYNOLDS PHYSICAL REVIEW E 65 026308
tion of flows through close-packed beds of spheres. M
detailed descriptions of the particular LB formulatio
adopted, commonly denoted byD3Q15, can be found in
Qian, d’Humieres, and Lallemand@14# and Chen and Doolen
@15#.

In the LBM, a discrete analogue of the linearized Bol
mann equation

f 1~x1ci ,t11!2 f 1~x, t !52
1

t
@ f 1~x, t !2 f 1

eq~x, t !#

~1!

is solved for the number density of molecules at nodex at
time t, f 1(x, t), of a gas of ‘‘fictitious’’ molecules that trans
late from node to node on a cubic lattice with a discrete
of velocities,ci . In the present model, there are six velociti
of speed one corresponding to the~100! directions, eight
velocities of speedA3 corresponding to the~111! directions
and one ‘‘rest’’ particle of speed zero. The distributio
f 1(x, t) is related to the fluid densityr and the momentum
densityj5ru, by

r5(
i

f 1 , j5(
i

f 1cu , ~2!

and the nondimensional kinematic viscosity of the fluidn is
related to the nondimensional relaxation timet by n5(2t
21)/6. Appropriate forms for equilibrium distributions
f 1

eq(x, t), are taken from Qian, d’Humieres, and Lallema
@14#

f 1
eq5t1rS 11

1

cs
2 ~ci•u!1

1

2cs
2 ~ci•u!22

1

2cs
2 u2D , ~3!

wheret152/9 for rest particles, 1/9 for particles with speed
and 1/72 for particles with speedA3. The speed of soundcs
51/A3.

Each solid sphere is defined by a spherical surface wh
cuts some of the links between the lattice nodes. The fi
tious gas molecules moving along these links were reflec
so that, in a single time step, they return to the lattice no
from where they came with an opposite velocity. As a res
a no-slip velocity condition is imposed midway along t
link. It is this easy implementation of the no-slip veloci
condition by the ‘‘bounce-back boundary scheme’’ whi
makes the LBM ideal for simulating fluid flows in compl
cated geometries. The bounce-back scheme is, however,
first order in numerical accuracy at the boundary@16# and so
degrades the LBM, which for the interior nodes is seco
order in numerical accuracy. Bounce-back schemes tha
second-order accurate have been proposed@17# but cannot be
readily implemented for complicated geometries. For t
reason, they are not employed here. It should also be n
that this paper predates the appearance of the paper by
berg and Ladd@18# which describes a LBM approach that
second-order accurate at the boundary.

The discrete representation of the spheres becomes
spherical with increasing sphere-radius-to-node spacing
tio. However, the size of the lattice required to obtain ac
02630
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rate results is primarily controlled by the need to reso
flow within the voids between neighboring spheres. The
sults of numerical simulations indicated that when vo
cross-sectional areas~approximately triangular in shape!
contained more than about 1/2325325 nodes, grid indepen
dent results~errors of less than 5%! were obtained for flows
with Re,400 through the period-1 arrangement and
flows with Re,120 for the period-2 arrangement. This w
achieved by having computational cells containing 703100
3100 nodes and 603104398 nodes for the period-1 an
period-2 arrangements, respectively. The maximum mean
locity was less than the speed of sound so ensuring inc
pressible fluid dynamics. The ability to simulate direct
flows within the period-1 arrangement with relatively larg
Reynolds numbers is a simple consequence of the gre
stability of nonturbulent flows within such structures~see
Sec. III A!. Flows with larger Reynolds numbers were sim
lated using the LBM was used in conjunction with a subg
model @19#, with a Smagorinky constant,Cs50.1.

The computational cells utilized in the numerical mod
ing are indicated in Fig. 1. Periodic boundary conditio
were applied at the edges of these cells, thereby facilita
the simulation of flows through packed beds of infinite e
tent. The gradient in applied pressure was assumed no
vary significantly across the computational cells so that
effects could be modeled accurately by a constant body-fo
F5(0, 0,F). This was implemented by calculating the equ
librium distribution functions with an altered fluid velocit
u1tF/r rather than with the actual fluid velocityu @20#.

For the period-1 and -2 arrangements, the initial va
problem was solved in which the fluid velocity was ze
throughout the domain and a body force was applied at t
t50. The chaotic~turbulent! solutions to the LBM were
taken to be converged when both the mean flow and
velocity variance varied by less than 1% during the last 2
of the run. Typically, 600 000 time steps were required.
detailed description of the computations for the period-3
rangement can be found in Reynolds, Reavell, and Ha
@1#.

FIG. 1. Locations of spheres in alternate layers of a hexago
close arrangement~left!. Also shown~right! are the locations of the
spheres within the computational cell, that comprises of two ‘‘eve
layers and an ‘‘odd’’ layer. Periodic boundary conditions are appl
at the top, bottom, and sides~dashed lines! of the cell. The location
of an open channel through the cell and aligned with the direc
of the applied pressure~the z direction! is indicated~1!. The com-
putational cell for the period-1 arrangement of spheres comprise
two ‘‘even’’ layers.
8-2
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EFFECTS OF PERIODICITY ON FLOW AND . . . PHYSICAL REVIEW E65 026308
B. Simulation of particle trajectories

There are two possible approaches to the modeling
particle dispersion. In the Eulerian approach, a diffusio
advection equation for the time evolution of a scalar
solved while in the Lagrangian approach, mean concen
tions of a scalar are calculated by ensemble averaging
the simulated independent tracer-particle trajectories. In
paper the Lagrangian approach is adopted because:
boundary conditions do not need to be specifieda prori in an
ad hoc fashion; the approach does not introduce numer
diffusion and; because it can be readily extended to ‘‘hea
particles.

The trajectories of tracer-particles (xf , uf) were simu-
lated by numerical integration of the tracer advection eq
tion

dxf

dt
5u1~xf , t !, ~4!

where to filter out the effects of the staggered momentu
inherent in the solution to theD3Q15 model@21#, the particle
velocity uf , is taken to be the local fluid velocity, tempor
averaged over two successive iterations of the latt
Boltzmann model. This quantity is known only at the nod
of the computational grid and at discrete times. An appro
mation to this quantity at the particle location at timet was
obtained by linear interpolation from the grid nodes to t
particle location and from the solutions for timest8 and t8
11 to time t wheret8<t,t811.

Close to the solid boundaries the spatial resolution of
grid is not sufficient, nor can it ever be, for an accura
determination of particle trajectories. These inaccurac
which are compounded by the interpolation, can result in
nonphysical deposition of some tracer particles. To overco
this difficulty, the flow at the boundary nodes, which is pr
dicted to vanish, was given a small normal outward com
nent. The magnitude of this normal component was take
be constant throughout the flow domain and equal to
smallest value which prevented all nonphysical depositi
This was typically two or more orders of magnitude less th
the magnitude of the velocity at the nearest node within
flow. The simulated trajectories of tracer particles were fou
to be insensitive to a tenfold increase in the value of
outward velocity component.

III. PREDICTED FLOW AND DISPERSION
CHARACTERISTICS

A. Sequence of transitions

Here, as throughout, Reynolds numbers Re and Re8 are
based upon the radius of a sphere, the magnitude of the v
metrically and temporally averaged fluid velocity within th
voids and the root-mean-square~rms! of the magnitude of
the volumetrically averaged fluid velocity. With increasin
Re, flows through the period-1 and period-2 arrangement
spheres underwent a series a transitions from steady to
periodic to quasiperiodic before eventually become cha
02630
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~turbulent! with frequency spectra exhibiting inertia sub
range scaling, i.e.,S(v);v25/3 over a narrow range of fre
quencies. The same sequence of transitions, but with di
ent critical Reynolds number, has also be found for
period-3 arrangement@1–3# but in stark contrast with the
results of numerical simulations using the LBM for two
dimensional flows through periodic arrangements of cyl
ders@4#, there was no indication of their being any perio
multiplying transitions. Of the three closely packe
arrangements, the period-1~the nonclosed-packed! arrange-
ment is the most stable, with steady flows persisting at
.100, while the period-2 arrangement is the least stable
coming chaotic at Re'19.8 and having the largest ratios o
Re8/Re. Characteristics of these flows and the nature of
flow transitions are further examined in Secs. III B and III

B. Distributions of turbulent kinetic energy

A natural quantity to statistically characterize the flu
flow associated with each node in the computational grid
the kinetic energy,k51/2ru•u. Figure 2 shows that the dis
tributions of normalized kinetic-energyE5k/kmax for the
steady and chaotic flows with Re!1 and Re'19.8 through
the period-2 arrangement. It is seen that for the steady fl
the distributionn(E) of E follows a power law over roughly
two orders of magnitude, while for the chaotic flow, it has
log-normal distribution over roughly three orders of mag
tude in analogy with the log-binomial distribution for th
local currents found in the corresponding random resis
network @22,23#. Similar transitions with increasing Rey
nolds number from a power-law to a log-normal distributi
of turbulent kinetic energies have been reported for
period-3 arrangement and were also found for the perio
arrangement. Andradeet al. @24# suggested that such
power-law distribution indicates that the local kinetic ener
is sensitive to the geometry of the pore structure. Con
quently, when the flow is steady, the ‘‘stagnant’’ zones pla
significant role in determining transport through the pack
bed, in contrast with the dangling ends for the analogo
electrical transport problem@22,23#. A transition from a
power-law to a log-normal distribution of kinetic energie
has also been predicted to occur for flows through
period-3 arrangement of spheres@1#.

Several factors may contribute to the dissimilarities b
tween the scaling of the steady and turbulent flows. At l
values of Re, there is a tendency for the fluid at the lo
void scale to preserve the parabolic shape of the velo
profiles even when the fluid is confined to very tortuo
pathways. At high values of Re, however, the irregular g
ometry is very effective in producing sudden and drama
changes in the directions and magnitudes of the fluid velo
ties, thus distorting their parabolic profile at the local level
the void space. Furthermore, at high values of Re, the n
linear advection term in the Navier-Stokes equations beco
relevant and can lead to vortices and flow separation. Ind
in their numerical simulations of flows through close
packed spheres in a fcc arrangement with the gradien
applied pressure oriented along the@001# direction, Hill and
Koch @3# observed that with increasing Reynolds number,
8-3
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FIG. 2. The distribution of normalized local kinetic energy for a steady flow with Re'0.2 ~top! and a chaotic flow with Re'19.8
~bottom!. The power-law scaling regimes are indicated by dashed lines.
t
je
n , -2,

e is,
geometrical structure of the flow changes from one tha
dominated by extension and shear to one in which the tra
tories are helical. That is, with increasing Re, velocity a
vorticity, v5¹3u, become more closely aligned.
02630
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C. Helicity

The distributions of cosw5u•v/uuuuvu shown in Fig. 3
demonstrate such transitions also occur for the period-1
and -3 arrangements. For all three arrangements, ther
ime for

t

FIG. 3. The probability density function of the cosine of the angle between the velocity and the vorticity at a single instant in t
the period 1~left: d, steady flow with Re'50.6; h, chaotic flow with Re'379.4!, period 2,~middle: d, steady flow with Re'0.2; h,
chaotic flow with Re'19.8; distributions for Re'19.8 and 650 were not found to be significantly different! and the period 3~right: d, steady
flow with Re'0.2; s, chaotic flow with Re'113; distributions for Re'113 and 2200 were not found to be significantly differen!
arrangement of spheres.
8-4
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FIG. 4. The probability density function, at a single instant in time of helicity for turbulent flows through the period 1~left, Re
'379.4!, 2 ~middle, Re'19.8; a similar distribution was obtained for Re'650! and 3~right, Re'113! arrangement of spheres. The lines a
double exponential distributions with zero mean and standard deviationsv•u .
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with increasing Reynolds number, a decrease in the ma
tude of the peak of the distribution at cosw50, caused by
fluid in the outer regions penetrating into the she
dominated flow close to the spheres and an increase in
tail of the distribution at cosw561 caused by the close
alignment of velocity and vorticity. These findings sugge
that the mechanism proposed by Hill and Koch@3# for the
transfer of energy to smaller scales by the dynamic inte
tion of vortices is generally applicable to flows through ar
trary closely packed arrangements of spheres~irrespective of
whether changes in geometry are brought about the pac
arrangement or by a reorientation of the gradient in app
pressure! and that the occurrence of helical trajectories is
generic feature of such turbulent flows. The later has imp
tant implications for particle transport because helicity, ev
when time dependent, is an important quantity govern
dispersion and is associated with suppressed rates of tu
lent dispersion at long times and anomalous dispersion
intermediate times@25,26#. Note, however, that within the
channels in the period-1 and -2 arrangements, the probab
of ucoswu.0.5 is negligibly small when Re,O(103).

The distributions of helicity h5u•v in moderate
Reynolds-number@Re;O(102)# turbulent flows are, how-
ever, strongly dependent upon geometry. For the perio
arrangement with the gradient in applied pressure in
@001# direction, this distribution is close to being a doub
exponential@3#, while for the period-1, -2, and -3 arrange
ments considered here it is not, as demonstrated in Fig
For these arrangements, a double exponential distribu
only arises when Re.O(102), as illustrated in Fig. 5.

D. Channelling

A key difference between the fcc and the period-1 and
arrangements of spheres is the orientation of straight ch
nels through the packed bed. For the period-1 and -2 arra
ment these channels are oriented along the@001# direction,
which is the most natural orientation of the gradient in a
plied pressure and the orientation adopted in the pre
study. As shown in Fig. 6, for the period-2 arrangement
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spheres, channelling occurs when the flow is steady
breakdowns at moderate Reynolds numbers when the m
nitude and orientation of the quasiperiodic flow within th
channels becomes subject to large spatial-temporal fluc
tions, which lead to a destabilizing the flow throughout t
bed. Channelling is seen to re-emerge at such larger R
nolds numbers when the flow becomes turbulent.

Tracer particles released from sources located wit
channels and into the quasiperiodic flow were found to d
perse throughout the bed, while the majority of those
leased into the turbulent flow~and advected by the resolve
fluid motions! were found to remain within the channels. Th
re-emergence of channelling at high-Reynolds numbers
therefore, be expected to be accompanied by a reductio
diffusivity. Tracer particle in the quasiperiodic flow is exam
ined in more detail in the next section.

FIG. 5. The probability density function, at a single instant
time, of the helicity from the lattice Boltzmann simulations for
chaotic flow Re'2200 through closed-packed spheres in a fcc
rangement with the gradient in applied pressure in the@111# direc-
tion. The lines are double exponential distributions with zero me
and standard deviationsv•u .
8-5
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FIG. 6. Snap shots of the predicted veloci
components in thex-z and y-z planes passing
through the middle of the channel~indicated by
the dashed line! of the period-2 arrangement o
spheres for a steady flow with Re'0.2, a quasi-
periodic flow with Re'19.8 and a turbulent flow
with Re'650. For clarity, only every second vec
tor is plotted. A vector with length equal to
sphere radius corresponds to a projected sp
uuu50.06, nondimensionalized on the sphere
dius and the kinematic viscosity. To remove th
‘‘staggered momentum,’’ velocity component
have been averaged over two successive inte
tions n of the lattice Boltzmann equation.
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E. Dispersion characteristics

In the absence of molecular diffusion, dispersion in stea
flows can only arise from distributed sources through
action of mean-streamline straining~i.e., convective disper-
sion!. This mechanism is likely to be most effective when t
gradient in applied pressure is not aligned with a princi
axis or when the Eulerian flow is unsteady because then
ticle trajectories can be nonperiodic. As for the fcc arran
ment of spheres@1#, the root-mean-square spread of trac
particles s at a distanced from a point source in the
quasiperiodic flow with the hcp arrangement of spheres
seen in Fig. 7 to obeys}d1/2 in the far field. The observed
anisotropy arises because the source, which is located w
a void that is not in channel, is approximately one sph
radius from the nearest channel in they direction but is ap-
proximately) radii from the nearest channel in thex direc-
tion. The corresponding temporal development of dispers

FIG. 7. The predicted rms spread of tracer-particlessx andsy

~x direction, d; y direction j! from a continuous point sourc
within a void ~not in a channel! into the quasiperiodic flow with
Re'19.8 and within the period-2 arrangement of spheres, as a f
tion of (d)1/2, whered is the distance from the source measured
sphere diameters. The power-law regimes are indicated by s
lines.
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is shown in Fig. 8. Transport is seen to be ballistic at sh
times and Fickian in the far field, while at intermedia
times, it is superdiffusive and faster than ballistic. The Fic
ian dispersion characteristic is most probably a conseque
of the length and time scales on which transport occurs be
much longer than the scales on which the velocity field
perienced by the particles varies.

Intermediate-time superdiffusion occurs for displaceme
between about 0.7 and 2.8 sphere radii in the direction of
gradient in applied pressure, which corresponds to trans
around the first and second spheres encountered by the t
particles, and consequently, to the first and second enc
ters tracer particles have with stagnation points in the flo
The extent and degree of the superdiffusion is seen to
more pronounced in the simulation data for the period-2 th
for the period-3 arrangement and in both cases increases
increasing Reynolds number. Indeed, the simulation data
the hcp arrangement clearly shows the emergence of ano
lous power-law dispersion, which for Re;O(103) extends
over about one order of magnitude in nondimensional tim
t/(r 2/v). The possibility but not the superdiffusive chara
teristicper seof such rapid plume growth in the vicinity of a
‘‘stagnation streamline’’ and around an obstacle in a turb
lent flow has been investigated previously using a gener
zation of rapid distortion theory@7,8#. According to this
theory, dispersion is enhanced by mean-streamline strain

For the period-3 packing arrangement, the transition fr
superdiffusion to Fickian dispersion is seen in Fig. 8 to
distinguished by a regime of subdiffusion. This subdiffusi
may be a consequence of particle entrapment in the visc
boundary layers close to the solid surfaces and the cont
tion of mean streamlines in the ‘‘wake’’ flows behind th
spheres@7,8#. For the hcp arrangement of spheres, these s
diffusive effects are probably masked by the dominance
superdiffusion. Support for this conjecture comes from
simulation data for a source located within a direct chan
and far from a stagnation streamline which, as shown in F
8, exhibits subdiffusion at intermediate times.

c-

lid
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FIG. 8. The predicted mean-square spread of tracer-particlessx
2, from a source on the ‘‘stagnation streamline’’ in directions normal to

gradient in applied pressure as a function of time,t for the fcc~left! and hcp~right! arrangements of spheres. Predictions are shown for fl
within the hcp arrangement of spheres with Re;O(102) ~solid lines! and Re;O(103) ~dotted lines!. Also shown~dashed line! are predictions
for the dispersion of tracer particles from a source located within an open channel into a flow with Re;O(103). The regimes of ballistic
(sx

2}t2) and Fickian (sx}t) transport are indicated. Quantities have been rendered nondimensional using the sphere radiusr and the
viscosityn. At times t/(r 2/n);O(103), tracer particles have typically traversed a distance greater than 20r .
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IV. CONCLUSIONS

In this paper, flow and dispersion through a fixed bed
spheres in a period-1, period-2~hcp!, and period-3~fcc! ar-
rangement of spheres have been studied in numerical s
lations. For the period-1, -2 and -3 packing arrangeme
there is a transition with increasing Reynolds number from
power-law to a log-normal distribution of turbulent kinet
energies and, velocity and vorticity become more clos
aligned. The power-law distribution of turbulent kinetic e
ergies indicates that the ‘‘stagnant’’ zones of steady flo
play a significant role in determining transport, contrary
the dangling bonds in the analogous electrical transport p
lem, while the occurrence of helical trajectories has imp
tant consequences for turbulent transport processes, resu
in suppressed rates of turbulent dispersion at long times
anomalous dispersion at intermediate times@25,26#. The ro-
bustness of these flow and dispersion characteristics
. E

h.

-

02630
f

u-
s,
a

y

s

b-
-
ing
nd

to

changes in periodicity suggests that they persist when
packing geometry is effectively changed by a reorientation
the direction of the gradient in applied pressure. This conj
ture is supported by simulation data for the fcc close-pack
arrangement with the gradient in applied pressure orien
along the@111# and @001# directions@1–3#.

For steady and strongly turbulent flows, the chann
through the period-1 and -2 arrangements of spheres pro
direct routes for marked fluid-particle transport but f
weakly turbulent flows influence dispersion primarily by d
stabilizing the flow throughout the entire flow domain.
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